besaran dan pengukuran

A. Besaran Fisika dan Satuan
1. Pengertian Besaran Fisika, Besaran Pokok, dan Besaran Turunan
Di dalam pembicaraan kita sehari-hari yang dimaksud dengan berat badan adalah massa, sedangkan dalam fisika pengertian berat dan massa berbeda. Berat badan dapat kita tentukan dengan menggunakan alat timbangan berat badan. Misalnya, setelah ditimbang berat badanmu 50 kg atau dalam fisika bermassa 50 kg. Tinggi atau panjang dan massa adalah sesuatu yang dapat kita ukur dan dapat kita nyatakan dengan angka dan satuan. Panjang dan massa merupakan besaran fisika. Jadi, besaran fisika adalah ukuran fisis suatu benda yang dinyatakan secara kuantitas.
Selain besaran fisika juga terdapat besaran-besaran yang bukan besaran fisika, misalnya perasaan sedih, gembira, dan lelah. Karena perasaan tidak dapat diukur dan tidak dapat dinyatakan dengan angka dan satuan, maka perasaan bukan besaran fisika.
Besaran fisika dikelompokkan menjadi dua, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang sudah ditetapkan terlebih dahulu. Adapun, besaran turunan merupakan besaran yang dijabarkan dari besaran-besaran pokok.
Sistem satuan besaran fisika pada prinsipnya bersifat standar atau baku, yaitu bersifat tetap, berlaku universal, dan mudah digunakan setiap saat dengan tepat. Sistem satuan standar ditetapkan pada tahun 1960 melalui pertemuan para ilmuwan di Sevres, Paris. Sistem satuan yang digunakan dalam dunia pendidikan dan pengetahuan dinamakan sistem metrik, yang dikelompokkan menjadi sistem metrik besar atau MKS (Meter Kilogram Second) yang disebut sistem internasional atau disingkat SI dan sistem metrik kecil atau CGS (Centimeter Gram Second).
Besaran pokok dan besaran turunan beserta dengan satuannya dapat dilihat dalam Tabel.
Tabel Satuan Besaran Pokok dalam Sistem Metrik
Tabel beberapa contoh garam
N0Besaran PokokSatuan SI/MKKSSingkatanSatuan Sistem CGSSingkatan
1Panjangmetermcentimetercm
2Massakilogramkggramg
3Waktudetiksdetiks
4SuhukelvinKKelvink
5Kuat arus listrikampereAstat amperestatA
6Intensitas cahayacandelaCdcandelaCd
7Jumlah zatkilo molkmolmolmol
Selain tujuh besaran pokok di atas, terdapat dua besaran pokok tambahan, yaitu sudut bidang datar dengan satuan radian (rad) dan sudut ruang dengan satuan steradian (sr).
Tabel Beberapa Besaran Turunan beserta Satuannya
N0Besaran TurunanPenjabaran dari Besaran PokokSatuan dalam MKKS
1LuasPanjang × Lebarm2
2VolumePanjang × Lebar × Tinggim3
3Massa JenisMassa : Volumekg/m3
4KecepatanPerpindahan : Waktum/s
5PercepatanKecepatan : Waktum/s2
6GayaMassa × Percepatannewton (N) = kg.m/s2
7UsahaGaya × Perpindahanjoule (J) = kg.m2/s2
8DayaUsaha : Waktuwatt (W)= kg.m2/s3
9TekananGaya : Luaspascal (Pa) = N/m2
10MomentumMassa × Kecepatankg.m/s
Satuan Sistem Internasional (SI) digunakan di seluruh negara dan berguna untuk perkembangan ilmu pengetahuan dan perdagangan antarnegara. Kamu dapat membayangkan betapa kacaunya perdagangan apabila tidak ada satuan standar, misalnya satu kilogram dan satu meter kubik.
a. Satuan Internasional untuk Panjang
Hasil pengukuran besaran panjang biasanya dinyatakan dalam satuan meter, centimeter, milimeter, atau kilometer. Satuan besaran panjang dalam SI adalah meter. Pada mulanya satu meter ditetapkan sama dengan panjang sepersepuluh juta (1/10000000) dari jarak kutub utara ke khatulistiwa melalui Paris. Kemudian dibuatlah batang meter standar dari campuran Platina-Iridium. Satu meter didefinisikan sebagai jarak dua goresan pada batang ketika bersuhu 0ºC. Meter standar ini disimpan di International Bureau of Weights and Measure di Sevres, dekat Paris.
Batang meter standar dapat berubah dan rusak karena dipengaruhi suhu, serta menimbulkan kesulitan dalam menentukan ketelitian pengukuran. Oleh karena itu, pada tahun 1960 definisi satu meter diubah. Satu meter didefinisikan sebagai jarak 1650763,72 kali panjang gelombang sinar jingga yang dipancarkan oleh atom gas krypton-86 dalam ruang hampa pada suatu lucutan listrik.
Pada tahun 1983, Konferensi Internasional tentang timbangan  dan ukuran memutuskan bahwa satu meter merupakan jarak yang ditempuh cahaya pada selang waktu 1/299792458
sekon. Penggunaan kecepatan cahaya ini, karena nilainya dianggap selalu konstan.
b. Satuan Internasional untuk Massa
Besaran massa dalam SI dinyatakan dalam satuan kilogram (kg). Pada mulanya para ahli mendefinisikan satu kilogram sebagai massa sebuah silinder yang terbuat dari bahan campuran Platina dan Iridium yang disimpan di Sevres, dekat Paris. Untuk mendapatkan ketelitian yang lebih baik, massa standar satu kilogram didefinisikan sebagai massa satu liter air murni pada suhu 4ºC.
c. Satuan Internasional untuk Waktu
Besaran waktu dinyatakan dalam satuan detik atau sekon dalam SI. Pada awalnya satuan waktu dinyatakan atas dasar waktu rotasi bumi pada porosnya, yaitu 1 hari. Satu detik didefinisikan sebagai 1/26400 kali satu hari rata-rata. Satu hari rata-rata sama dengan 24 jam = 24 x 60 x 60 = 86400 detik. Karena satu hari matahari tidak selalu tetap dari waktu ke waktu, maka pada tahun 1956 para ahli menetapkan definisi baru. Satu detik adalah selang waktu yang diperlukan oleh atom cesium-133 untuk melakukan getaran sebanyak 9192631770 kali.
2. Mengonversi Satuan Panjang, Massa, dan Waktu
Setiap besaran memiliki satuan yang sesuai. Penggunaan satuan suatu besaran harus tepat, sebab apabila tidak sesuai akan berkesan janggal bahkan lucu. Misalnya seseorang mengatakan tinggi badannya 150ºC, orang lain yang mendengar mungkin akan tersenyum karena hal itu salah. Demikian pula dengan pernyataan bahwa suhu badan orang yang sehat biasanya 36 meter, terdengar janggal.
Hasil suatu pengukuran belum tentu dinyatakan dalam satuan yang sesuai dengan keinginan kita atau yang kita perlukan. Contohnya panjang meja 1,5 m, sedangkan kita memerlukan dalam satuan cm, satuan gram dinyatakan dalam kilogram, dari satuan milisekon menjadi sekon. Untuk mengonversi atau mengubah dari suatu satuan ke satuan yang lainnya diperlukan tangga konversi. Gambar di bawah menunjukkan tangga konversi panjang, massa, dan waktu, beserta dengan langkah-langkah penggunaannya.
3. Awalan Satuan dan Sistem Satuan di Luar Sistem Metrik
Di samping satuan sistem metrik, juga dikenal satuan lainnya yang sering dipakai dalam kehidupan sehari-hari, misalnya liter, inci, yard, feet, mil, ton, dan ons. Satuan-satuan tersebut dapat dikonversi atau diubah ke dalam satuan sistem metrik dengan patokan yang ditentukan. Konversi besaran panjang menggunakan acuan sebagai berikut:
• 1 mil = 1760 yard (1 yard adalah jarak pundak sampai ujung jari tangan orang dewasa).
• 1 yard = 3 feet (1 feet adalah jarak tumit sampai ujung jari kaki orang dewasa).
• 1 feet = 12 inci (1 inci adalah lebar maksimal ibu jari tangan orang dewasa).
• 1 inci = 2,54 cm
• 1 cm = 0,01 m
Satuan mil, yard, feet, inci tersebut dinamakan satuan sistem Inggris. Untuk besaran massa berlaku juga sistem konversi dari satuan sehari-hari maupun sistem Inggris ke dalam sistem SI.
Contohnya sebagai berikut.
• 1 ton = 1000 kg
• 1 kuintal = 100 kg
• 1 slug = 14,59 kg
• 1 ons (oz) = 0,02835 kg
• 1 pon (lb) = 0,4536 kg
Satuan waktu dalam kehidupan sehari-hari dapat dikonversi ke dalam sistem SI yaitu detik atau sekon. Contohnya sebagai berikut.
• 1 tahun = 3,156 x 10pangkat 7 detik
• 1 hari = 8,640 x 10 pangkat4 detik
• 1 jam = 3600 detik
• 1 menit = 60 detik
Di dalam sistem metrik juga dikenal sistem awalan dari sistem MKS baik ke sistem makro maupun ke sistem mikro. Perhatikan Tabel berikut ini.
Tabel Awalan Satuan Sistem Metrik Besaran Panjang
Penelitian jagad mikro dengan konversi sistem mikro banyak berkembang dalam bidang teknolgi dewasa ini, contohnya teknologi nano yang menyelidiki jagad renik seperti sel, virus, bakteriofage, dan DNA. Adapun penelitian jagad makro menggunakan konversi sistem makro karena objek penelitiannya mencakup wilayah lain dari jagad raya, yaitu objek alam semesta di luar bumi.
4. Mengonversi Satuan Besaran Turunan
Besaran turunan memiliki satuan yang dijabarkan dari satuan besaranbesaran pokok yang mendefinisikan besaran turunan tersebut. Oleh karena itu, seringkali dijumpai satuan besaran turunan dapat berkembang lebih dari satu macam karena penjabarannya dari definisi yang berbeda. Sebagai contoh, satuan percepatan dapat ditulis dengan m/s2 dapat juga ditulis dengan N/kg. Satuan besaran turunan dapat juga dikonversi. Perhatikan beberapa contoh di bawah ini!
• 1 dyne = 10pangkat-5 newton
• 1 erg = 10pangkat-7 joule
• 1 kalori = 0,24 joule
• 1 kWh = 3,6 x 10pangkat6 joule
• 1 liter = 10pangkat-3 m3 = 1 dm3
• 1 ml = 1 cm3 = 1 cc
• 1 atm = 1,013 x 10pangkat5 pascal
• 1 gauss = 10pangkat-4 tesla
B. Pengukuran Besaran Fisika
Peranan pengukuran dalam kehidupan sehari-hari sangat penting. Seorang tukang jahit pakaian mengukur panjang kain untuk dipotong sesuai dengan pola pakaian yang akan dibuat dengan menggunakan meteran pita. Penjual daging menimbang massa daging sesuai kebutuhan pembelinya dengan menggunakan timbangan duduk.
Seorang petani tradisional mungkin melakukan pengukuran panjang dan lebar sawahnya menggunakan satuan bata, dan tentunya alat ukur yang digunakan adalah sebuah batu bata. Tetapi seorang insinyur sipil mengukur lebar jalan menggunakan alat meteran kelos untuk mendapatkan satuan meter.
Ketika kita mengukur panjang meja dengan penggaris, misalnya didapat panjang meja 100 cm, maka panjang meja merupakan besaran, 100 merupakan hasil dari pengukuran sedangkan cm adalah satuannya.
Beberapa aspek pengukuran yang harus diperhatikan yaitu ketepatan (akurasi), kalibrasi alat, ketelitian (presisi), dan kepekaan (sensitivitas). Dengan aspek-aspek pengukuran tersebut diharapkan mendapatkan hasil pengukuran yang akurat dan benar.
Berikut ini akan kita bahas pengukuran besaran-besaran fisika, meliputi panjang, massa, dan waktu.
1. Pengukuran Panjang
Alat ukur yang digunakan untuk mengukur panjang benda haruslah
sesuai dengan ukuran benda. Sebagai contoh, untuk mengukur lebar buku kita gunakan pengaris, sedangkan untuk mengukur lebar jalan raya lebih mudah menggunakan meteran kelos.
a. Pengukuran Panjang dengan Mistar
Penggaris atau mistar berbagai macam jenisnya, seperti penggaris yang berbentuk lurus, berbentuk segitiga yang terbuat dari plastik atau logam, mistar tukang kayu, dan penggaris berbentuk pita (meteran pita). Mistar mempunyai batas ukur sampai 1 meter, sedangkan meteran pita dapat mengukur panjang sampai 3 meter. Mistar memiliki ketelitian 1 mm atau 0,1 cm.
Posisi mata harus melihat tegak lurus terhadap skala ketika membaca skala mistar. Hal ini untuk menghindari kesalahan pembacaan hasil pengukuran akibat beda sudut kemiringan dalam melihat atau disebut dengan kesalahan paralaks.

b. Pengukuran Panjang dengan Jangka Sorong
Jangka sorong merupakan alat ukur panjang yang mempunyai batas ukur sampai 10 cm dengan ketelitiannya 0,1 mm atau 0,01 cm. Jangka sorong juga dapat digunakan untuk mengukur diameter cincin dan diameter bagian dalam sebuah pipa. Bagian-bagian penting jangka sorong yaitu
1. rahang tetap dengan skala tetap terkecil 0,1 cm
2. rahang geser yang dilengkapi skala nonius. Skala tetap dan nonius mempunyai selisih 1 mm.
c. Pengukuran Panjang dengan Mikrometer Sekrup
Mikrometer sekrup memiliki ketelitian 0,01 mm atau 0,001 cm. Mikrometer sekrup dapat digunakan untuk mengukur benda yang mempunyai ukuran kecil dan tipis, seperti mengukur  ketebalan plat, diameter kawat, dan onderdil kendaraan yang berukuran kecil.
Bagian-bagian dari mikrometer adalah rahang putar, skala utama, skala putar, dan silinder bergerigi. Skala terkecil dari skala utama bernilai 0,1 mm, sedangkan skala terkecil untuk skala putar sebesar 0,01 mm. Berikut ini gambar bagian-bagian dari mikrometer.
2. Pengukuran Massa Benda
Timbangan digunakan untuk mengukur massa benda. Prinsip kerjanya adalah keseimbangan kedua lengan, yaitu keseimbangan antara massa benda yang diukur dengan anak timbangan yang digunakan. Dalam dunia pendidikan sering digunakan neraca O’Hauss tiga lengan atau dua lengan. Perhatikan beberapa alat ukur berat berikut ini.
Bagian-bagian dari neraca O’Hauss tiga lengan adalah sebagai berikut:
• Lengan depan memiliki skala 0—10 g, dengan tiap skala bernilai 1 g.
• Lengan tengah berskala mulai 0—500 g, tiap skala sebesar 100 g.
• Lengan belakang dengan skala bernilai 10 sampai 100 g, tiap skala 10 g.
3. Pengukuran Besaran Waktu
Berbagai jenis alat ukur waktu misalnya: jam analog, jam digital, jam dinding, jam atom, jam matahari, dan stopwatch. Dari alat-alat tersebut, stopwatch termasuk alat ukur yang memiliki ketelitian cukup baik, yaitu sampai 0,1 s.
C. Suhu dan Pengukurannya
1. Pengertian Suhu
Ukuran derajat panas dan dingin suatu benda tersebut dinyatakan dengan besaran suhu. Jadi, suhu adalah suatu besaran untuk menyatakan ukuran derajat panas atau dinginnya suatu benda.
2. Termometer sebagai Alat Ukur Suhu
Suhu termasuk besaran pokok. Alat untuk untuk mengukur besarnya suhu suatu benda adalah termometer. Termometer yang umum digunakan adalah termometer zat cair dengan pengisi pipa kapilernya adalah raksa atau alkohol. Pertimbangan dipilihnya raksa sebagai pengisi pipa kapiler termometer adalah sebagai berikut:
a. raksa tidak membasahi dinding kaca,
b. raksa merupakan penghantar panas yang baik,
c. kalor jenis raksa rendah akibatnya dengan perubahan panas yang kecil cukup dapat mengubah suhunya,
d. jangkauan ukur raksa lebar karena titik bekunya -39 ºC dan titik didihnya 357ºC.
Pengukuran suhu yang sangat rendah biasanya menggunakan termometer alkohol. Alkohol memiliki titik beku yang sangat rendah, yaitu -114ºC. Namun demikian, termometer alkohol tidak dapat digunakan untuk mengukur suhu benda yang tinggi sebab titik didihnya hanya 78ºC.
Pada pembuatan termometer terlebih dahulu ditetapkan titik tetap atas dan titik tetap bawah. Titik tetap termometer tersebut diukur pada tekanan 1 atmosfer. Di antara kedua titik tetap tersebut dibuat skala suhu. Penetapan titik tetap bawah adalah suhu ketika es melebur dan penetapan titik tetap atas adalah suhu saat air mendidih.

Berikut ini adalah penetapan titik tetap pada skala termometer.
a. Termometer Celcius
Titik tetap bawah diberi angka 0 dan titik tetap atas diberi angka 100. Diantara titik tetap bawah dan titik tetap atas dibagi 100 skala.
b. Termometer Reaumur
Titik tetap bawah diberi angka 0 dan titik tetap atas diberi angka 80. Di antara titik tetap bawah dan titik tetap atas dibagi menjadi 80 skala.
c. Termometer Fahrenheit
Titik tetap bawah diberi angka 32 dan titik tetap atas diberi angka 212. Suhu es yang dicampur dengan garam ditetapkan sebagai 0ºF. Di antara titik tetap bawah dan titik tetap atas  dibagi 180 skala.
d. Termometer Kelvin
Pada termometer Kelvin, titik terbawah diberi angka nol. Titik ini disebut suhu mutlak, yaitu suhu terkecil yang dimiliki benda ketika energi total partikel benda tersebut nol. Kelvin menetapkan suhu es melebur dengan angka 273 dan suhu air mendidih dengan angka 373. Rentang titik tetap bawah dan titik tetap atas termometer Kelvin dibagi 100 skala.

Perbandingan skala antara temometer Celcius, termometer Reaumur, dan termometer Fahrenheit adalah
C : R : F = 100 : 80 : 180
C : R : F = 5 : 4 : 9
Dengan memperhatikan titik tetap bawah 0ºC = 0ºR = 32ºF, maka hubungan skala C, R, dan F dapat ditulis sebagai berikut:
tº C =5/4 tºR
tº C =5/9 (tºF – 32)
tº R =4/9 (tºF – 32)
Hubungan skala Celcius dan Kelvin adalah
t K = tºC + 273 K
Kita dapat menentukan sendiri skala suatu termometer. Skala termometer yang kita buat dapat dikonversikan ke skala termometer yang lain apabila pada saat menentukan titik tetap kedua termometer berada dalam keadaan yang sama.
Misalnya, kita akan menentukan skala termometer X dan Y. Termometer X dengan titik tetap bawah Xb dan titik tetap atas Xa. Termometer Y dengan titik tetap bawah Yb dan titik tetap atas Ya. Titik tetap bawah dan titik tetap atas kedua termometer di atas adalah suhu saat es melebur dan suhu saat air mendidih pada tekanan 1 atmosfer.
Dengan membandingkan perubahan suhu dan interval kedua titik tetap masing-masing termometer, diperoleh hubungan sebagai berikut.
Keterangan:
Xa = titik tetap atas termometer X
Xb = titik tetap bawah termometer X
Tx = suhu pada termometer X
Ya = titik tetap atas termometer Y
Yb = titik tetap bawah termometer Y
Ty = suhu pada termometer Y
D. Memperhatikan dan Menerapkan Keselamatan Kerja dalam Pengukuran
Belajar fisika tidak dapat dipisahkan dari kegiatan laboratorium. Dalam melaksanakan percobaan dan kegiatan di laboratorium mungkin saja terjadi kecelakaan. Oleh karena itu, penting sekali untuk menjaga keselamatan dalam bekerja. Salah satu usaha menjaga keselamatan kerja dan mencegah terjadinya kecelakaan adalah dengan memperhatikan dan melaksanakan tata tertib di laboratorium.
Mengapa kecelakaan dapat terjadi? Kecelakaan di laboratorium dapat terjadi disebabkan beberapa hal, antara lain
1. tidak mematuhi tata tertib laboratorium,
2. tidak bersikap baik dalam melaksanakan kegiatan laboratorium,
3. kurangnya pemahaman dan pengetahuan terhadap alat, bahan, serta cara penggunaannya,
4. kurangnya penjelasan dari guru atau tenaga laboratorium, dan
5. tidak menggunakan alat pelindung.
Adapun bahaya-bahaya yang mungkin perlu diantisipasi di lingkungan laboratorium adalah sebagai berikut:
1. luka bakar akibat panas,
2. bahaya listrik,
3. bahaya radioaktif, dan
4. bahaya kebakaran.
Share:

Tidak ada komentar:

Posting Komentar